Discussion Problems for Math 180

Tuesday, March 31, 2015

Review

1. Write as a single logarithm: $2 \ln (x)-\ln (y)+1$
2. What is $\sin \left(\frac{\pi}{12}\right)$?
3. A water balloon dropped from the top of University Hall will ${ }^{1}$, at time t, have a height of

$$
h(t)=102 \mathrm{~m}-\left(5 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
$$

(a) How long will it take for the balloon to hit a roughly two meter-tall student on the head?
(b) How fast will the balloon be moving upon impact?

This time
4. If $s(3)=4$ and $s^{\prime}(3)=-2$, estimate $s(2.85)$.
5. Prove that the function $f(x)=17 x^{6} \quad 15 x^{4}+3 x^{2} \quad 5 x$ has a critical point on the interval $[0,1]$. (You will not be able to determine what this critical point is.) [The MVT hasn't been covered yet.]
6. Evaluate the following limits:
(a) [Briggs and Cochran, 4.7.16] $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{2}+3 x}$
(b) [Briggs and Cochran, 4.7.17] $\lim _{x \rightarrow e} \frac{\ln (x)-1}{x-e}$
(c) [Briggs and Cochran, 4.7.21] $\lim _{u \rightarrow \pi / 4} \frac{\tan (u)-\cot (u)}{u-\pi / 4}$
7. Rewrite as the limit of a fraction, and then evaluate the limit using l'Hôpital's rule.
(a) [Briggs and Cochran, 4.7.45] $\lim _{x \rightarrow 0} x \csc x$
(b) [Briggs and Cochran, 4.7.52] $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+1}$
(c) [Briggs and Cochran, 4.7.53] $\lim _{\theta \rightarrow \frac{\pi}{2}-} \tan \theta-\sec \theta$

[^0]
[^0]: ${ }^{1}$ This equation neglects the very significant effects of air resistance, but were going to roll with it for now.

